IMPROVING FORECASTS OF RUNOFF

Martyn P. Clark

Center for Science and Technology Policy Research
Cooperative Institute for Research in Environmental Sciences
University of Colorado, Boulder

Lauren E. Hay

Water Resources Division
United States Geological Survey, Denver

Generate an archive of atmospheric forecasts

Generate an archive of atmospheric forecasts

Develop downscaling relationships, and apply to the operational forecast model

Generate an archive of atmospheric forecasts

Develop downscaling relationships, and apply to the operational forecast model

Estimate basin initial conditions

Generate an archive of atmospheric forecasts

Develop downscaling relationships, and apply to the operational forecast model

Estimate basin initial conditions

Run hydrologic models in ensemble mode to provide probablistic forecasts of streamflow and estimates of forecast uncertainty

Generate an archive of atmospheric forecasts

Develop downscaling relationships, and apply to the operational forecast model

Estimate basin initial conditions

Run hydrologic models in ensemble mode to provide probablistic forecasts of streamflow and estimates of forecast uncertainty

□ Perform side-by-side comparisons with operational NWS forecasts, and, where appropriate, infuse our procedures in regular NWS operations

MRF FORECAST ARCHIVE

□ The NCEP/NCAR reanalysis –

a 40+ year record of global atmospheric fields and surface fluxes derived from a numerical weather prediction and data assimilation system kept unchanged over the analysis period

 Every five days, a single realization of an 8-day forecast was run

for the period 1958-1998, this provides over 2500 8-day forecasts that can be compared with observations

Model output is archived on a regular lat/lon grid with approx 1.875° horizontal resolution.

Generate an archive of atmospheric forecasts

THE NEED FOR A FIXED NWP MODEL

□ Model July precipitation biases (% mean) in the NCEP/NCAR reanalysis

THE NEED FOR A FIXED NWP MODEL

Precipitation biases are in excess of 100% of the mean

TEMPERATURE BIASES

☐ Model January temperature biases (°C) in the NCEP/NCAR reanalysis

TEMPERATURE BIASES

Temperature biases are in excess of 3°C

THE CDC-SCRIPPS RE-FORECAST EXPERIMENT

- □ Uses a fixed version (circa 1998) of the NCEP operational MRF.
- □ Ultimate goal to generate an ensemble of eleven 21-day forecasts for the past 23 years (1978-2001), initialized with boundary conditions from the reanalysis project
- □ Control run already completed.

Generate an archive of atmospheric forecasts

Develop downscaling relationships, and apply to the operational forecast model

DOWNSCALING OF THE NCEP MRF OUTPUT

- □ Use Multiple linear Regression with forward selection
- □ Predictor Variables (over 300):
 - Geo-potential height, wind, and humidity at five pressure levels
 - Various surface flux variables
 - Computed variables such as vorticity advection, stability indices, etc.
 - Variables lagged to account for temporal phase errors in atmospheric forecasts.
- Predictands are maximum and minimum temperature, precipitation occurrence, and precipitation amounts

DOWNSCALING OF THE NCEP MRF OUTPUT

- □ Use Multiple linear Regression with forward selection
- □ Predictor Variables (over 300):
 - Geo-potential height, wind, and humidity at five pressure levels
 - Various surface flux variables
 - Computed variables such as vorticity advection, stability indices, etc.
 - Variables lagged to account for temporal phase errors in atmospheric forecasts.
- Predictands are maximum and minimum temperature, precipitation occurrence, and precipitation amounts
- Use cross-validation procedures for variable selection – typically less than 8 variables are selected for a given equation
- Stochastic modeling of the residuals in the regression equation to provide ensemble time series

DOWNSCALING OF THE NCEP MRF OUTPUT

- □ Use Multiple linear Regression with forward selection
- Predictor Variables (over 300):
 - Geo-potential height, wind, and humidity at five pressure levels
 - Various surface flux variables
 - Computed variables such as vorticity advection, stability indices, etc.
 - Variables lagged to account for temporal phase errors in atmospheric forecasts.
- Predictands are maximum and minimum temperature, precipitation occurrence, and precipitation amounts
- Use cross-validation procedures for variable selection – typically less than 8 variables are selected for a given equation
- Stochastic modeling of the residuals in the regression equation to provide ensemble time series

- •A separate equation is developed for each station, each forecast day, and each month.
- Equations developed over the period 1958-1976, and validated for the period 1977-1998.

_{1,0} January Maximum Temperature

July Maximum Temperature

January Precipitation

July Precipitation

SKILL OF MAXIMUM TEMPERATURE PREDICTIONS

□ Median explained variance of maximum temperature predictions, computed for the 11,000 NWS co-op stations.
 □ Red is raw NCEP predictions, blue is based

on MOS guidance.

SKILL OF MINIMUM TEMPERATURE PREDICTIONS

□ Median explained variance of minimum temperature predictions, computed for the 11,000 NWS co-op stations.
 □ Red is raw NCEP predictions, blue is based on MOS guidance.

SKILL OF PRECIP OCCURRENCE PREDICTIONS

□ Median explained variance of precipitation occurrence predictions, computed for the 11,000 NWS co-op stations.
 □ Red is raw NCEP predictions, blue is based on MOS guidance.

SKILL OF PRECIPITATION PREDICTIONS

- ☐ Median explained variance of precipitation predictions, computed for the 11,000 NWS co-op stations.
- ☐ Red is raw NCEP predictions, blue is based on MOS guidance.

INTRASEASONAL HYDROLOGIC FORECASTS

Generate an archive of atmospheric forecasts

Develop downscaling relationships, and apply to the operational forecast model

Estimate basin initial conditions

INITIAL STUDY AREA

AVERAGE SPATIAL DISTRIBUTION OF SNOW COVER AND BIAS

COMPARISON OF SATELLITE- AND MODEL-DERIVED SNOW COVER MAPS

NOHRSC satellite-derived and model snow maps for 2 June 1997, and the results of a comparison of these maps.

INTRASEASONAL HYDROLOGIC FORECASTS

Generate an archive of atmospheric forecasts

Develop downscaling relationships, and apply to the operational forecast model

Estimate basin initial conditions

Run hydrologic models in ensemble mode to provide probablistic forecasts of streamflow and estimates of forecast uncertainty

MULTI-MODEL SUPER-ENSEMBLES IN HYDROLOGY

Two Hypotheses:

- □The mean of runoff simulations from multiple models will be superior to the runoff simulation from any given model
- □The spread of the hydrologic model ensemble is related to the error in the hydrologic simulation

SUMMARY AND OUTLOOK

- □ The large biases in output from medium range forecast models creates a need for post-processing of model output in order for it to be effectively used in hydrologic simulations.
- Our downscaling system is successful in both removing mean model biases, and improving the skill in the raw NCEP output.
- □ When the downscaled NCEP output is used as input to hydrologic models, forecasts of runoff have greater skill than the forecasts generated with the traditional ESP approach.